Abstract

The work is dedicated to the further development of a compact quantum frequency standard based on a rubidium gas cell with a mixture of buffer gases. The results of frequency measurements and analysis of short-term frequency instability obtained on a laboratory prototype of a microwave rubidium atomic frequency standard (RAFS) with pulsed optical pumping (POP) are presented. The main in magnitude contributions to the overall frequency instability of the RAFS with POP are estimated. Short-term frequency instability expressed in terms of the Allan deviation and measured at averaging times τ up to several tens of seconds, σy (τ) = 2.5×10−13 τ −1/2, coincides satisfactorily with the calculated value of σy (τ) = 2.1×10−13 τ −1/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.