Abstract

The interaction between silica and rubber is very important for the production of high performance rubber. Silica surface modification with silane is a general method that aims to enhance the reinforcement efficiency of silica. In this study, a new surface modification of silica with silane and the chemical reaction with sulfenamide accelerator were investigated. The (gamma-glycidoxypropyl) trimethoxysilane (GPTMS) was used as a silane. The N-cyclohexyl-2-benzothiazole sulfenamide (CBS) and N-tert-butyl-2-benzothiazole sulfenamide (TBBS) were used as sulfenamide accelerators. The FTIR spectra results indicate that the GPTMS and sulfenamide accelerators (CBS and TBBS) could successfully form on the silica surface. The new modification is capable of significantly enhancing the reinforcement efficiency; more than the conventional silica surface modification by GPTMS (m-silica). In particular, modifying silica with GPTMS and TBBS (m-silica-TBBS) is capable of increasing the crosslink density and mechanical properties more efficiently than modified silica with GPTMS and CBS (m-silica-CBS), m-silica, silica (unmodified), and unfilled natural rubber. This is due to the presence of GPTMS, which plays an important role in increasing the chemical cross-linking in the rubber chain, while TBBS, as a sulfenamide accelerator, provides a high accelerator to sulfur ratio, which is able to give a more efficient vulcanization. With the reinforcement of a rubber rail pad with silica surface modification, the results indicate that the increment of m-silica-TBBS loading could reduce the deformation percentage of the rubber rail pad more than m-silica and m-silica loading. This is mainly due to the static spring improvement, which results in a stiffer material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call