Abstract

Abstract A basic theoretical concept of rubber friction on rough surfaces is presented that relates the frictional force to the dissipated energy of the rubber during sliding stochastic excitations on a broad frequency scale. It is shown that this is of high relevance for tire traction and allows for a prediction of the likely level of friction of tread compounds on the basis of viscoelastic data. The impact of both, the frequency dependent loss- and storage modulus on the frictional force during sliding of tires on rough tracks, is demonstrated quantitatively for different sliding velocities. The effect of the surface roughness of road tracks is described by three characteristic surface descriptors, i.e., the fractal dimension and the correlation lengths parallel and normal to the surface. These descriptors can be obtained from a fractal analysis of the road texture via stylus- or laser measurements. In particular, it is shown that the applied model of rubber friction is in agreement with the classical friction data of Grosch, who found a broad maximum for the friction coefficient with increasing sliding speed. The broadness of the friction maximum is shown to be directly related to the broadness of the roughness scale of the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.