Abstract

The purpose of this paper is to report on an experimental study that explores the effect of using recycled rubber powder as an alternate fine aggregate in concrete mixes. Natural sand in the concrete mixes was partially replaced by 5%, 10%, 15%, and 20%. Physical properties such as the density, the compressive strength, the fresh concrete properties, the split-tension, and the impact load capacity are examined. The results revealed a decrease in the compressive strength of concrete cylinders containing rubber. The dynamic performance of the rubber concrete is of high importance because of its high resilient nature, as the rubber particles that are included in the concrete have a positive effect on the dynamic performance. The conclusions that were derived from this research implicate potential applications where rubberized concrete can be efficiently used. Even though rubberized concrete mixture generally has a reduced compressive strength that may limit its use in certain structural applications, it possesses a number of desirable properties, such as lower density, higher toughness, and higher impact resistance compared to conventional concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call