Abstract

The development of advanced electrodes with highly active electrocatalysts and appropriate structures is essential for sustainable hydrogen production via water electrolysis. Moreover, there is significant demand for an affordable electrocatalyst that exhibits comparable activity to that of Pt. Herein, we report Ru2P nanofibers (NFs) as an efficient electrode material for a high-performance anion exchange membrane water electrolyzer (AEMWE). The electrospinning method enables the formation of a porous catalyst layer that comprises tangled NFs, which exhibit a three-dimensional structure with abundant empty space. In a half cell test, the Ru2P NFs exhibit a high catalytic activity for the hydrogen evolution reaction, which is comparable to the activity of a commercial Pt/C. In a single cell test, an AEMWE with Ru2P NFs demonstrates a higher performance than that with a commercial Pt/C, especially in the high current density region; this is attributed to the structural advantage of the porous catalyst layer, which enhances the mass transfer of the reactant, as well as the product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.