Abstract

Simultaneously optimizing elementary steps, such as water dissociation, hydroxyl transferring, and hydrogen combination, is crucial yet challenging for achieving efficient hydrogen evolution reaction (HER) in alkaline media. Herein, Ru single atom-doped WO2 nanoparticles with atomically dispersed Ru-W pair sites (Ru-W/WO2 -800) are developed using a crystalline lattice-confined strategy, aiming to gain efficient alkaline HER. It is found that Ru-W/WO2 -800 exhibits remarkable HER activity, characterized by a low overpotential (11mV at 10mAcm-2 ), notable mass activity (5863mAmg-1 Ru at 50mV), and robust stability (500h at 250mAcm-2 ). The highly efficient activity of Ru-W/WO2 -800 is attributed to the synergistic effect of Ru-W sites through ensemble catalysis. Specifically, the W sites expedite rapid hydroxyl transferring and water dissociation, while the Ru sites accelerate the hydrogen combination process, synergistically facilitating the HER activity. This study opens a promising pathway for tailoring the coordination environment of atomic-scale catalysts to achieve efficient electro-catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.