Abstract

The construction of an effective catalyst for hydrogen evolution reaction (HER) is a top priority. Herein, we demonstrate ruthenium (Ru) nanoclusters coupled with phosphorus and oxygen dual-doped carbon nanotube (CNT) architecture (Ru-POCA). The increased hydrophilicity and negatively charged surface of CNTs can strongly trap Ru ions. The hierarchical structure is favorable of providing abundant pathways and exposing more active sites for HER. Due to the synergistic effect of the hierarchical structure and modified surface chemistry, Ru-POCA exhibits excellent catalytic HER activity. The overpotential is 22 and 40 mV with a Tafel slope of 28.0 and 27.1 mV dec−1 in 1 M KOH and 0.5 M H2SO4 at 10 mA cm−2. Moreover, Ru-POCA processes good catalytic stability in both acidic and alkaline electrolytes, while the boosted catalytic HER activity is fundamentally studied by density functional theory calculation. This work provides a rational approach to constructing hierarchically structured Ru-CNTs-based catalysts for hydrogen evolution reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call