Abstract

Hydrogen is the cleanest fuel, but the safe storage and transportation of hydrogen is a relatively troublesome task, thus, developing high-performance hydrogen sensors has certain challenges. In this paper, high-performance hydrogen sensing material at near-ambient temperatures was prepared by using platinum and ruthenium co-modified the surface of WO3 nanowires obtained via electrospinning. When the atomic percentages of platinum (Pt) & ruthenium (Ru) to tungsten (W) is 7:4, the response value of sensors to 1 ppm hydrogen at near room temperature (70 °C) is 1010, making it suitable for practical application. Particularly, the sensor has a low detection limit of 252 ppt, good repeatability, selectivity and long-term stability. In addition, the electrocatalytic dehydrogenation (HER) performance of the samples was investigated and combined with the Raman study to explore the hydrogen sensing mechanism in this work. This work demonstrated that the modification of double noble metals could significantly improve the hydrogen sensing performance of WO3 nanowires, and it is expected to be extended to the practical application of metal oxide semiconductors based chemiresistive hydrogen sensors, which is of great significance for the large-scale safe use of hydrogen energy in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call