Abstract

Herein, we report a novel methodology for preparation of new N-doped extensively graphitized porous carbon (N-GPC) as a new catalyst support for Ru nanoparticles (NPs) with dramatically improved hydrogen evolution reaction (HER) activity. Our method is remarkably simple: pyrolyzing g-C3N4 in the presence of Mg metal. Here, we show that Mg plays marvelous dual roles as a reducing agent to graphitize the g-C3N4 precursor at low temperature and as a precursor for Mg3N2, which generates network-structured porous carbon as a new porogen. This offers highly robust graphitized carbon with high electrical conductivity, network-structured high porosity, and proper N content, most desired as a catalyst support. As-prepared Ru/N-GPC catalyst shows a remarkably low overpotential of 9.6 mV (vs. RHE) at 10 mA/cm2, which is near ideal, providing 12 times faster hydrogen production rate than state-of-the-art Pt/C. We explain the atomistic basis for this low overpotential and superb stability via Grand canonical quantum mechanics calculations. These calculations show that pyrrolic-N in the support strengthens the coupling to the Ru NP while weakening the binding of H to Ru NP to accelerate the Tafel step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.