Abstract

Ru(III) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(III) could significantly improve the oxidation rate of aniline by 5–24 times with its concentration increasing from 2.5 to 15μmol/L. The reaction of Ru(III) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(III), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(III) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)−1sec−1 with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC–MS/MS analysis. Ru(III), as an electron shuttle, was oxidized by permanganate to Ru(VI) and Ru(VII), which acted the co-oxidants for decomposition of aniline. Although Ru(III) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(III) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(III) toward permanganate oxidation in our future study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.