Abstract

A solid oxide fuel cell using a thin ceria-based electrolyte film with a Ru-catalyzed anode was directly operated on hydrocarbons, including methane, ethane, and propane, at 600 °C. The role of the Ru catalyst in the anode reaction was to promote the reforming reaction of the unreacted hydrocarbons by the produced steam and CO 2, which avoided interference from steam and CO 2 in the gas-phase diffusion of the fuels. The resulting peak power density reached 750 mW cm −2 with dry methane, which was comparable to the peak power density of 769 mW cm −2 with wet (2.9 vol.% H 2O) hydrogen. More important was the fact that the cell performance was maintained at a high level regardless of the change in the methane utilization from 12 to 46% but was significantly reduced by increasing the hydrogen utilization from 13 to 42%. While the anodic reaction of hydrogen was controlled by the slow gas diffusion, the anodic reaction of methane was not subject to the onset of such a gas-diffusion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.