Abstract

Wireless mesh networks consist of various mesh clients that are organized in an unfixed infrastructure and packets are forwarded using a multi-hop model. Routing protocols have a significant impact on mesh networks because their performance has a crucial effect on nodes connectivity and throughput. Recently, the integration of mesh clients with the Internet of Things (IoT) has gained significant importance to connect billions of machines and achieve fast coverage with minimum network cost. However, if mesh clients are mobile, then data routing via intermediate nodes gives a noteworthy effect on the network performance and latency. Furthermore, over the Internet, a malicious node may be a part of the mesh network and as a result, the sending information can be manipulated and compromised. Therefore, this research article aims to propose a robust and trusted scheme (RTS) for IoT-based mobile mesh networks to provide reliable routing, data confidentiality, and integrity. Firstly, the proposed scheme presents a robust data routing among mobile mesh clients, routers and gateway devices based on the network parameters and measurement of wireless channels. Moreover, the wireless channels between mesh devices are formulated based on the efficacy of link costs for data dissemination. Besides, the location of mobile mesh clients is determined by computing the distance vector at a regular time interval. Secondly, a secure and authentic data protection technique is proposed using public-private key cryptography, which aims to increase the protection of mesh clients with minimal overhead. The competence of the proposed scheme is significantly improved with respect to network throughput by an average of 14%, packet loss rate by an average of 37%, latency rate by an average of 12%, computational overhead by an average of 34%, and energy efficiency by an average of 20% as compared to other works.

Highlights

  • In the past two decades, the technology of wireless networks played a crucial role in the development of different network domains [1]–[4]

  • This paper presents a robust and trusted routing scheme between mesh clients based on Internet of Things (IoT) devices to prevent network threats and achieves efficient data transmission systems

  • Transmission links between mesh clients and gateways are secured under the presence of malicious nodes based on the RSA public-private cryptography

Read more

Summary

Introduction

In the past two decades, the technology of wireless networks played a crucial role in the development of different network domains [1]–[4]. Due to the open architecture of wireless mesh networks integrated with IoT, data routing is more prone to DoS attacks. Such attacks may be harmful to network resources where information can be forwarded to unauthorized nodes. To improve the routing performance in a mesh network concerning data privacy and network throughput, there is a need to construct a lightweight and secure data forwarding chains. In this way, only the information can be forwarded towards authorized mesh clients and leads to the trustworthiness of paths [43], [44]. The security challenges are growing over the Internet, the proposed solution has to be ever-improving against network threats [45]–[48]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call