Abstract

Traditional scientific and emerging data analytics applications require fast, power-efficient, large, and persistent memories. Combining all these characteristics within a single memory technology is expensive and hence future supercomputers will feature different memory technologies side-by-side. However, it is a complex task to program hybrid-memory systems and to identify the best object-to-memory mapping. We envision that programmers will probably resort to use default configurations that only require minimal interventions on the application code or system settings. In this work, we argue that intelligent, fine-grained data placement can achieve higher performance than default setups. We present an algorithm for data placement on hybrid-memory systems. Our algorithm is based on a set of single-object allocation rules and global data placement decisions. We also present RTHMS, a tool that implements our algorithm and provides recommendations about the object-to-memory mapping. Our experiments on a hybrid memory system, an Intel Knights Landing processor with DRAM and HBM, show that RTHMS is able to achieve higher performance than the default configuration. We believe that RTHMS will be a valuable tool for programmers working on complex hybrid-memory systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call