Abstract

BackgroundPCR-based surveys have shown that guppies (Poecilia reticulata) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system.ResultsJuvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, SWS2B and RH2-2, accounted for >85% of all visual-opsin transcripts in the eye, excluding RH1. This relative abundance (RA) value dropped to about 65% in adults, as LWS-A180 expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed LWS-S180 upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' SWS2-LWS gene cluster is negatively correlated with distance from a candidate locus control region (LCR).ConclusionsSelective pressures influencing visual-opsin gene expression appear to differ among age and sex. LWS upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving LWS upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the SWS2-LWS gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the first opsin-to-λmax assignments for all photoreceptor types in the cone mosaic.

Highlights

  • PCR-based surveys have shown that guppies (Poecilia reticulata) have an unusually large visual-opsin gene repertoire

  • The relative abundance (RA) of SWS2B and RH2-2 transcripts decreased to about 65%, apparently making room for the increase in A180 transcripts from approximately 3% to 20%, while the juvenile-to-female transition showed S180 upregulation from about 1.5% to 7% (Figure 2A-B)

  • We detected a small amount of variation (0.32%, p < 0.0001) between left and right eye expression; no significant difference (p = 0.6136) was seen between left and right eye expression overall

Read more

Summary

Introduction

PCR-based surveys have shown that guppies (Poecilia reticulata) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. This conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Visual-opsin gene loss and duplication and divergence have generated extensive repertoire variation among vertebrates that, in many cases, correlates to spectral environment (see reviews [22,23])

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.