Abstract

We propose an extension of the widely used class of multinomial processing tree models by incorporating response times via diffusion-model kernels. Multinomial processing tree models are models of categorical data in terms of a number of cognitive and guessing processes estimating the probabilities with which each process outcome occurs. The new method allows one to estimate completion times of each process along with outcome probability and thereby provides process-oriented accounts of accuracy and latency data in all domains in which multinomial processing tree models have been applied. Furthermore, the new models are implemented hierarchically so that individual differences are explicitly accounted for and do not bias the population-level estimates. The new approach overcomes a number of shortcomings of previous extensions of multinomial models to incorporate response times. We evaluate the new method’s performance via a recovery study and simulation-based calibration. The method allows one to test hypotheses about processing architecture, and it provides an extension of traditional diffusion model analyses where multinomial models have been proposed for the modeled paradigm. We illustrate these and other benefits of the new model class using five existing data sets from recognition memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.