Abstract

In this paper, an RST switching bi-controller, based on flatness and on Luenberger observers, is designed to control the opening angle change of an Electronic Throttle Valve (ETV), to compensate unexpected external disturbances and to detect sensor faults. Two identified mathematical linear models are established to simulate the ETV for two different positions of the throttle plate. The use of robust RST switching bi-controller based-flatness approach by the development of closedloop control is proposed, in order to obtain a stable system tracking a desired flat trajectory. The switching between the two models using stateflow tool is based on residual values generated by using the Luenberger observers in order to detect and to localize sensor faults occurrence. The observer’s gains are determined using Linear Matrix Inequalities (LMIs) taking into account the stability of the system based on Lyapunov theory. The simulation results show the efficiency of the developed robust switching RST bi-controller based-flatness in terms of tracking the desired angle’s reference trajectory, rejecting disturbances and detecting sensor faults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call