Abstract
The instability of DC microgrids is the most prominent problem that limits the expansion of their use, and one of the most important causes of instability is constant power load CPLs. In this paper, a robust RST digital feedback controller is proposed to overcome the instability issues caused by the negative-resistance effect of CPLs and to improve robustness against the perturbations of power load and input voltage fluctuations, as well as to achieve a good tracking performance. To develop the proposed controller, it is necessary to first identify the dynamic model of the DC/DC buck converter with CPL. Second, based on the pole placement and sensitivity function shaping technique, a controller is designed and applied to the buck converter system. Then, validation of the proposed controller using Matlab/Simulink was achieved. Finally, the experimental validation of the RST controller was performed on a DC/DC buck converter with CPL using a real-time Hardware-in-the-loop (HIL). The OPAL-RT OP4510 RCP/HIL and dSPACE DS1104 controller board are used to model the DC/DC buck converter and to implement the suggested RST controller, respectively. The simulation and HIL experimental results indicate that the suggested RST controller has high efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.