Abstract

BackgroundThe Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus. In a screen for regulators of efflux pumps in a phage-based ultra-high-density transposon library, we identified Rsp as a candidate regulator of the cntE gene.ResultsA two-fold decrease in expression of all genes of the cnt operon was observed by RT-qPCR in the rsp mutant compared to the parental strain, indicating that Rsp acts as an activator of the cnt operon. To determine whether the Rsp activation depends on iron, we compared mutant and parent cnt expression under varying metal conditions. A 2-fold reduction in cnt gene expression was detected in the rsp mutant in TSB, and a slightly smaller decrease (1.9, 1.7, and 1.5-fold changes for cntK, cmtA, and cntE respectively) was observed after addition of dipyridyl. The greatest decrease was seen with addition of FeSO4 (4.1, 5.3 and 6.3-fold changes for cntK, cmtA and cntE respectively). These findings suggest that Rsp activates the cnt operon in low and high iron conditions. To study the relationship between Rsp and the cnt repressors Fur and Zur, we created single and double mutants. Both fur and zur single mutants had significant increases in cnt gene expression compared to the parental strain, as did the fur rsp double mutant. The zur rsp double mutant also had a significant increase in cntK expression and a trend in increases in cntA and cntE expression just below statistical significance. Thus, the ability of Fur and Zur to repress cnt gene expression are not eliminated by the presence of Rsp. However, there were significantly smaller increases in cnt gene expression in the double mutants compared to single mutants, suggesting that Rsp activation can still occur in the absence of these repressors. To determine if Rsp directly modulates expression of cnt genes, incubation of purified Rsp caused a DNA-specific band shift for the cntK and cntA promoters.ConclusionsRsp activation may act to maintain basal cellular levels of staphylopine to scavenge free metals when needed, in addition to metal dependent regulation by Fur and Zur.

Highlights

  • The Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus

  • The first three genes cntK-M are responsible for StP biosynthesis; cntA-F encode the importer of the StP-metal complex; and CntE is involved in the export of StP [4,5,6,7]

  • The expression of all genes in cnt operon decreased by an average of two-fold in the rsp mutant compared to the parental strain, being statistically significant for all genes of the operon, indicating that Rsp acts as an activator of cntE and of the entire cnt operon. This finding was further supported by the results that restoration of the presence of Rsp via introducing plasmid encoding rsp gene reestablished the expression of cntK, cntA and cntE genes to the levels of wild type strain (USA300 JE2) with the empty plasmid as the control (Fig. 1)

Read more

Summary

Introduction

The Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus. S. aureus is confronted with a robust host innate immune response and an environment with low availability of free iron, manganese, and zinc [1, 2]. To overcome this host defense mechanism, S. aureus has evolved a diverse array of metal acquisition strategies that facilitates its proliferation and pathogenesis in host tissues [2, 3]. S. aureus captures free metals from the host through high-affinity transporter systems or small chelating molecules called metallophores [3]. The first three genes cntK-M are responsible for StP biosynthesis; cntA-F encode the importer of the StP-metal complex; and CntE is involved in the export of StP [4,5,6,7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call