Abstract

Cell migration plays a crucial role in various biological processes, such as gastrulation, immune response, and cancer metastasis. In response to chemoattractant-like growth factors, cells form protrusions and migrate toward the source of the signal. Rho family small GTPase Rac is a key regulator of cell migration by stimulating actin polymerization to generate lamellipodia, flat membrane protrusions at the leading edge of migrating cells. FilGAP (ARHGAP24), a Rac-specific GTPase-activating protein (GAP), suppresses lamellipodia formation, and controls tumor cell migration. In this study, we found that FilGAP is phosphorylated downstream of epidermal growth factor (EGF) signaling. Upon EGF stimulation, FilGAP is phosphorylated at Ser625 by p90 ribosomal S6 kinase (RSK) and then at Ser621 by glycogen synthase kinase 3 (GSK3). Phosphorylation of FilGAP induces its dissociation from actin filaments. We identified a novel actin-localization domain of FilGAP that is essential for stabilizing cell adhesion. Additionally, we found that phosphorylation of FilGAP inhibits its lamellipodia suppression activity. Finally, we showed the expression of nonphosphorylatable FilGAP mutant, but not wild-type FilGAP, reduced cell migration speed and persistence toward the EGF gradient. Taken together, our results suggest that phosphorylation of FilGAP downstream of EGF-signaling plays a critical role in regulating chemotactic tumor cell migration by controlling cell-matrix adhesion and protrusion formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.