Abstract
Power line inspection is an important part of the smart grid. Efficient real-time detection of power devices on the power line is a challenging problem for power line inspection. In recent years, deep learning methods have achieved remarkable results in image classification and object detection. However, in the power line inspection based on computer vision, datasets have a significant impact on deep learning. The lack of public high-quality power scene data hinders the application of deep learning. To address this problem, we built a dataset for power line inspection scenes, named RSIn-Dataset. RSIn-Dataset contains 4 categories and 1887 images, with abundant backgrounds. Then, we used mainstream object detection methods to build a benchmark, providing reference for insulator detection. In addition, to address the problem of detection inefficiency caused by large model parameters, an improved YoloV4 is proposed, named YoloV4++. It uses a lightweight network, i.e., MobileNetv1, as the backbone, and employs the depthwise separable convolution to replace the standard convolution. Meanwhile, the focal loss is implemented in the loss function to solve the impact of sample imbalance. The experimental results show the effectiveness of YoloV4++. The mAP and FPS can reach 94.24% and 53.82 FPS, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.