Abstract

Clouds use economies of scale to host data for diverse enterprises. However, enterprises differ in the requirements for their data. In this work, we investigate the problem of resiliency or disaster recovery (DR) planning in a cloud. The resiliency requirements vary greatly between different enterprises and also between different datasets for the same enterprise. We present in this paper Resilient Storage CloudMap (RSCMap), a generic cost-minimizing optimization framework for disaster recovery planning, where the cost functionmay be tailored tomeet diverse objectives.We present fast algorithms that come up with a minimumcost DR plan, while meeting all the DR requirements associated with all the datasets hosted on the storage cloud. Our algorithms have strong theoretical properties: 2 factor approximation for bandwidthminimization and fixed parameter constant approximation for the general cost minimization problem. We perform a comprehensive experimental evaluation of RSCMap using models for a wide variety of replication solutions and show that RSCMap outperforms existing resiliency planning approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call