Abstract

Atrial fibrillation (AF) is the most common arrhythmia with serious complications and a high rate of recurrence after catheter ablation. Recently, mutation ofMYL4was reported as responsible for familial atrial cardiomyopathy and AF. This study aimed to determine the association between polymorphism inMYL4with the onset and recurrence of AF.Methods and Results:A total of 7 single-nucleotide polymorphisms were selected by linkage disequilibrium and genotyped in 510 consecutive AF patients and 192 controls without structural heart disease. A total of 246 AF patients who underwent cryoballoon ablation had a 1-year scheduled follow-up study for AF recurrence. C allele and CC genotype of rs4968309 and A allele of rs1515751were associated with AF onset both before and after adjustment of covariation (age, sex, hypertension, and diabetes). AF type and left atrial size were different among the genotypes of rs4968309. Moreover, CC genotype of rs4968309 increased susceptibly of AF recurrence after cryoballoon ablation. The prevalence of hypertension was associated with rs1515752, and left atrial size was associated with the genotype of rs2071438. C allele and CC genotype of rs4968309 inMYL4were associated with AF onset and recurrence. Moreover, the A allele of rs1515751 had a significant association with AF onset. The polymorphisms ofMYL4can predict AF onset and prognosis after ablation in AF patients without structural heart disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.