Abstract

For better flexibility and greater coverage areas, Unmanned Aerial Vehicles (UAVs) have been applied in Flying Mobile Edge Computing (F-MEC) systems to offer offloading services for the User Equipment (UEs). This paper considers a disaster-affected scenario where UAVs undertake the role of MEC servers to provide computing resources for Disaster Relief Devices (DRDs). Considering the fairness of DRDs, a max-min problem is formulated to optimize the saved time by jointly designing the trajectory of the UAVs, the offloading policy and serving time under the constraint of the UAVs' energy capacity. To solve the above non-convex problem, we first model the service process as a Markov Decision Process (MDP) with the Reward Shaping (RS) technique, and then propose a Deep Reinforcement Learning (DRL) based algorithm to find the optimal solution for the MDP. Simulations show that the proposed RS-DRL algorithm is valid and effective, and has better performance than the baseline algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call