Abstract

Radar radio source (RRS) recognition plays an important role in the fields of military electronic support systems (ESM) and civilian autonomous driving. The rapid development of machine learning technology, especially deep learning, has effectively and efficiently improved RRS intelligent recognition performances when operating in the increasingly complex electromagnetic environment. However, the data sampling limitation and computation cost are still severe challenges in real RRS recognition scenarios. In this paper, we propose a novel network based on meta-transfer learning, called RRSARNet, to achieve effective adaptive RRS recognition in the context of low signal-to-noise ratio (SNR). First, by using the short-time Fourier transform, a six-type small samples RRS simulation dataset with different SNR levels is constructed. Then, a novel RRSARNet, based on metric learning, is proposed, which consists of a four-layer embedding module and a four-layer relational module. Finally, the RRS dataset is divided into training, supporting and testing subsets, which are used to train and test the RRSARNet in a meta-transfer learning method. Experiments on the RRS dataset show that the proposed RRSARNet can achieve an overall accuracy (OA) above 96% and 99% when the SNR is above −15 dB and −10 dB, respectively. Even when the SNR is -30 dB, OA can reach more than 70%. For 5-way 1-shot and 5-way 5-shot experiments, the inference time of an image is about 0.043 and 0.140 milliseconds, respectively. Besides, experiments on the RRS simulation dataset and the two benchmark datasets, the RRSARNet performs better or more competitive than many existing state-of-the-art technologies in terms of recognition accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.