Abstract
Region proposal algorithms play an important role in most state-of-the-art two-stage object detection networks by hypothesizing object locations in the image. Nonetheless, region proposal algorithms are known to be the bottleneck in most two-stage object detection networks, increasing the processing time for each image and resulting in slow networks not suitable for real-time applications such as autonomous driving vehicles. In this paper we introduce RRPN, a Radar-based real-time region proposal algorithm for object detection in autonomous driving vehicles. RRPN generates object proposals by mapping Radar detections to the image coordinate system and generating pre-defined anchor boxes for each mapped Radar detection point. These anchor boxes are then transformed and scaled based on the object's distance from the vehicle, to provide more accurate proposals for the detected objects. We evaluate our method on the newly released NuScenes dataset [1] using the Fast R-CNN object detection network [2]. Compared to the Selective Search object proposal algorithm [3], our model operates more than 100x faster while at the same time achieves higher detection precision and recall. Code has been made publicly available at https://github.com/mrnabati/RRPN .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.