Abstract

Virus like dsDNA elements (VLE) in yeast were previously shown to encode the killer toxins PaT and zymocin, which target distinct tRNA species via specific anticodon nuclease (ACNase) activities. Here, we characterize a third member of the VLE-encoded toxins, PiT from Pichia inositovora, and identify PiOrf4 as the cytotoxic subunit by conditional expression in Saccharomyces cerevisiae. In contrast to the tRNA targeting toxins, however, neither a change of the wobble uridine modification status by introduction of elp3 or trm9 mutations nor tRNA overexpression rescued from PiOrf4 toxicity. Consistent with a distinct RNA target, expression of PiOrf4 causes specific fragmentation of the 25S and 18S rRNA. A stable cleavage product comprising the first ∼ 130 nucleotides of the 18S rRNA was purified and characterized by linker ligation and subsequent reverse transcription; 3'-termini were mapped to nucleotide 131 and 132 of the 18S rRNA sequence, a region showing some similarity to the anticodon loop of tRNA(Glu)(UUC), the zymocin target. PiOrf4 residues Glu9 and His214, corresponding to catalytic sites Glu9 and His209 in the ACNase subunit of zymocin are essential for in vivo toxicity and rRNA fragmentation, raising the possibility of functionally conserved RNase modules in both proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call