Abstract

Efficient storage and querying of large repositories of RDF content is important due to the widespread growth of Semantic Web and Linked Open Data initiatives. Many novel database systems that store RDF in its native form or within traditional relational storage have demonstrated their ability to scale to large volumes of RDF content. However, it is increasingly becoming obvious that the simple dyadic relationship captured through traditional triples alone is not sufficient for modelling multi-entity relationships, provenance of facts, etc. Such richer models are supported in RDF through two techniques — first, called reification which retains the triple nature of RDF and the second, a non-standard extension called N-Quads. In this paper, we explore the challenges of supporting such richer semantic data by extending the state-of-the-art RDF-3X system. We describe our implementation of RQ-RDF-3X, a reification and quad enhanced RDF-3X, which involved a significant re-engineering ranging from the set of indexes and their compression schemes to the query processing pipeline for queries over reified content. Using large RDF repositories such as YAGO2S and DBpedia, and a set of SPARQL queries that utilize reification model, we demonstrate that RQ-RDF-3X is significantly faster than RDF-3X.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.