Abstract

Previously, we reported that cell-cell contact regulates K(+) channel mRNA expression in cultured adult rat cardiac myocytes. Here we show that exposing cardiac myocytes to tyrosine kinase inhibitors (genistein, tyrphostin A25), but not inactive analogs, prevents downregulation of Kv1.5 mRNA and upregulation of Kv4.2 mRNA normally observed when they are cultured under low-density conditions. Furthermore, cardiac myocytes cocultured with cells that endogenously (Mv 1 Lu) or heterologously (Chinese hamster ovary cells) express the receptor-type protein tyrosine phosphatase mu (RPTPmu) display Kv1.5 mRNA levels paralleling that which was observed in myocytes cultured under high-density conditions and in intact tissue. In contrast, myocytes cocultured with control cells failed to produce this response. Finally, it is shown that Kv4.2 mRNA expression is unaffected by RPTPmu. These findings reveal that multiple tyrosine phosphorylation-dependent mechanisms control cardiac myocyte K(+) channel genes. Furthermore, we conclude that RPTPmu specifically regulates cardiac myocyte Kv1.5 mRNA expression. Thus this receptor protein tyrosine phosphatase may be important in responses to pathological conditions associated with the loss of cell-cell interactions in the heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.