Abstract
Head fixation allows the recording and presentation of controlled stimuli and is used to study neural processes underlying spatial navigation. However, it disrupts the head direction system because of the lack of vestibular stimulation. To overcome this limitation, we developed a novel rotation platform which can be driven by the experimenter (open-loop) or by animal movement (closed-loop). The platform is modular, affordable, easy to build and open source. Additional modules presented here include cameras for monitoring eye movements, visual virtual reality, and a micro-manipulator for positioning various probes for recording or optical interference. We demonstrate the utility of the platform by recording eye movements and showing the robust activation of head-direction cells. This novel experimental apparatus combines the advantages of head fixation and intact vestibular activity in the horizontal plane. The open-loop mode can be used to study e.g., vestibular sensory representation and processing, while the closed-loop mode allows animals to navigate in rotational space, providing a better substrate for 2-D navigation in virtual environments. The full build documentation is maintained at https://ranczlab.github.io/RPM/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.