Abstract

Antibody drug conjugates (ADCs) harness the target specificity of a monoclonal antibody (mAb) and the high cytotoxicity of a small molecule, enabling improved delivery of a potent antitumor agent compared to traditional chemotherapy for cancer therapy. Only two ADCs have been marketed, both of which are produced via nonsite-specific conjugation of the cytotoxic drug to either interchain cysteine (Adcetris) or lysine (Kadcyla). A growing body of evidence suggests that site-specific ADCs, because of their payload homogeneity, will improve pharmacokinetics and have wider therapeutic windows when compared to heterogeneous ADCs. Previously, we have demonstrated the use of a cell free expression system (Xpress CF+) for rapid production of site-specific ADCs. Here we report the generation of a variety of ADCs via conjugation between a site-specific incorporated non-natural amino acid (nnAA), para-azidomethyl-l-phenylalanine (pAMF), and dibenzocyclooctyl-(polyethylene glycol)4 (DBCO-(PEG)4) linked payloads using this platform. We developed a reversed phase HPLC method for drug to antibody ratio (DAR) characterization, which is applicable to both reduced and intact ADCs. We demonstrate that these ADCs are of near complete conjugation and exhibit potent cell killing activity and in vitro plasma stability. Moreover, we generated an ADC conjugated at both light and heavy chains, resulting in a DAR close to 4. With the increased number of payloads, the resultant DAR 4 ADC is potentially more efficacious than its DAR 2 counterparts, which could further improve its therapeutic index. These studies have demonstrated the competency of Xpress CF+ for site-specific ADC production and improved our understanding of the site-specific ADCs in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call