Abstract
In this paper, we propose a new approach for optimizing a large-scale non-convex differentiable function subject to linear equality constraints. The proposed method, RPCGB (random perturbation of the conditional gradient method with bisection algorithm), computes a search direction by the conditional gradient, and an optimal line search is found by a bisection algorithm, which results in a decrease of the cost function. The RPCGB method is designed to guarantee global convergence of the algorithm. An implementation and testing of the method are given, with numerical results of large-scale problems that demonstrate its efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.