Abstract
The CMS experiment implements a two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High Level Trigger. To cope with the more challenging luminosity conditions, a new Level-1 architecture has been deployed during run II. This new architecture exploits in a better way the redundancy and complementarity of the three muon subsystems: Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC). The role of each subsystem in the Level-1 Muon Trigger is described here, highlighting the contribution from the RPC system. Challenges brought by the HL-LHC environment and new possibilities coming from detector and trigger upgrades are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.