Abstract

Recent developments in high-throughput RNA sequencing methods coupled with innovative bioinformatic tools have uncovered thousands of circular (circ)RNAs. CircRNAs have emerged as a vast and novel class of regulatory RNAs with potential to modulate gene expression by acting as sponges for microRNAs (miRNAs) and RNA-binding proteins (RBPs). The biochemical enrichment of circRNAs by exoribonuclease treatment or by depletion of polyadenylated RNAs coupled with deep-sequencing is widely used for the systematic identification of circRNAs. Although these methods enrich circRNAs substantially, they do not eliminate efficiently non-polyadenylated and highly-structured RNAs. Here, we describe a method we termed RPAD, based on initial RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion. These joint interventions drastically depleted linear RNAs leading to isolation of highly pure circRNAs from total RNA pools. By facilitating the isolation of highly pure circRNAs, RPAD enables the elucidation of circRNA biogenesis, sequence, and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.