Abstract

Background and Aim:Gentamicin (GM) is one of the most effective antibiotics for severe, life-threatening Gram-negative infections. Nevertheless, its clinical use has been restrained because of its nephrotoxic potential. Royal jelly (RJ) and aliskiren (ALK) can individually prevent such toxic effects. The aim of this study was to explore the protective effects of a combination treatment of RJ and ALK on GM-mediated nephrotoxicity.Materials and Methods:Thirty-two adult female. Wistar rats were divided equally into four groups: (I) Receiving normal saline; (II) GM (100 mg/kg, intraperitoneal [i.p.] injection); GM (100 mg/kg, i.p. injection) plus ALK (50 mg/kg, i.p. injection); and (IV) GM (100 mg/kg, i.p. injection) plus ALK (50 mg/kg, i.p. injection) in combination with RJ (150 mg/kg, orally). All treatments were administered daily for 10 days. The blood levels of creatinine, urea, uric acid, albumin, and total protein were measured. Then, the animals were sacrificed, and the kidneys were taken for histopathology.Results:Compared to normal control rats, GM-injected rats showed significantly (p<0.001) higher serum concentrations of uric acid, urea, and creatinine as well as evidently (p<0.001) lower blood levels of albumin and total protein. Moreover, GM administration was associated with significant renal histopathological changes. All these alterations were considerably (p<0.05) improved in GM-injected rats receiving ALK compared to rats receiving GM alone. However, when RJ was given in combination with ALK to GM-injected rats, it lessened the beneficial nephroprotective effects of both agents.Conclusion:The combination treatment of RJ and ALK is not desirable for GM-induced nephrotoxicity. Further studies are crucial to accurately explore the precise mechanism of RJ antagonistic interaction with ALK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.