Abstract

BackgroundRoxithromycin (RXM) has been widely used in asthma treatment; however, the mechanism has not been fully understood. The aim of our study was to investigate the underlying mechanism of RXM treatment in mediating the effect of transforming growth factor (TGF)-β1 on airway smooth muscle cells (ASMCs) proliferation and caveolinn-1 expression.MethodsFirstly, the rat ovalbumin (OVA) model was built according to the previous papers. Rat ASMCs were prepared and cultured, and then TGF-β1 production in ASMCs was measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the proliferation of ASMCs was determined using cell counting kit (CCK-8) assay. Additionally, the expressions of caveolin-1, phosphorylated-ERK1/2 (p-ERK1/2) and phosphorylated–AKT (p-AKT) in ASMCs treated with or without PD98059 (an ERK1/2 inhibitor), wortannin (a PI3K inhibitor), β-cyclodextrin (β-CD) and RXM were measured by Western blot. Finally, data were evaluated using t–test or one-way ANOVA, and then a P value < 0.05 was set as a threshold.ResultsCompared with normal control, TGF-β1 secretion was significantly increased in asthmatic ASMCs; meanwhile, TGF-β1 promoted ASMCs proliferation (P < 0.05). However, ASMCs proliferation was remarkably inhibited by RXM, β-CD, PD98059 and wortmannin (P < 0.05). Moreover, the expressions of p-ERK1/2 and p-AKT were increased and peaked at 20 min after TGF-β1 stimulation, and then suppressed by RXM. Further, caveolin-1 level was down-regulated by TGF-β1 and up-regulated by inhibitors and RXM.ConclusionOur findings demonstrate that RXM treatment inhibits TGF-β1-induced activation of ERK and AKT and down-regulation of caveolin-1, which may be the potential mechanism of RXM protection from chronic inflammatory diseases, including bronchial asthma.

Highlights

  • With inflammation being the principle underlying pathophysiological characteristic, asthma has been reported primarily as an inflammatory disorder, which would drive airway obstruction and remodeling [1]

  • transforming growth factor (TGF)-β1 production in airway smooth muscle cells (ASMCs) and the effect of transforming growth factor-β1 (TGF-β1) on ASMCs proliferation To determine the secretion of TGF-β1 in rat ASMCs, cells culture supernatants were collected and measured

  • TGF-β1 treatment was discovered significantly promoted the proliferation of ASMCs (P < 0.05, Figure 1B)

Read more

Summary

Introduction

With inflammation being the principle underlying pathophysiological characteristic, asthma has been reported primarily as an inflammatory disorder, which would drive airway obstruction and remodeling [1]. Airway smooth muscle (ASM) has been discovered plays a central role in the pathogenesis of airway remodeling. Previous studies have showed that transforming growth factor-β1 (TGF-β1) is involved in the pathophysiology of asthma [3]. TGF-β1 has reported increases the secretion of marix metalloproteinase [5] and production of extracellular matrix [6] in ASMCs, suggesting a new mechanism of airway remodeling. The aim of our study was to investigate the underlying mechanism of RXM treatment in mediating the effect of transforming growth factor (TGF)-β1 on airway smooth muscle cells (ASMCs) proliferation and caveolinn-1 expression

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.