Abstract

Current treatments for infections caused by multidrug-resistant bacteria still remain challenging and therapeutic materials with high efficacy are of demand. Herein, a bactericidal nanocomposite was constructed by loading Roxarsone (ROX) onto nitrosylated mesoporous polydopamine (named mPDA@NO-ROX). The designed nanocomposite exhibited considerable photothermal effect and controlled NO and ROX co-delivery under the irradiation of near-infrared laser (NIR) to achieve enhanced chemo-photothermal antibacterial therapy. The in vitro antibacterial evaluation of the mPDA@NO-ROX demonstrated the effective elimination of the Gram-negative tetracycline-resistant Escherichia coil and Gram-positive methicillin-resistant Staphylococcus aureus under mild NIR irradiation compared to merely ROX loaded unmodified mPDA, indicating the NO enhanced chemo-photothermal therapy. In addition, the cytotoxicity experiments indicated that mPDA@NO-ROX exhibited only 5 % of hemolysis rate and high cell viability at 1 mg mL-1 against mammalian fibroblasts, suggesting the excellent biocompatibility. In conclusion, the mPDA@NO-ROX could be a promising candidate for anti-infection therapy of multidrug-resistant bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.