Abstract

Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials.

Highlights

  • Northern China has a very intensive agriculture with high inputs of seeds, irrigation and chemicals, because of high pressure of food security

  • An intercropping system often consists of three phases: (1) one crop grown for a short time, (2) two intercropping crops grown simultaneously for a long time, and (3) the other crop grown for a short time [11]

  • The Land equivalent ratio (LER) values greater than 1 in all intercropping systems in the present study indicated high land-use efficiency compared to monoculture of maize or soybean [36]

Read more

Summary

Introduction

Northern China has a very intensive agriculture with high inputs of seeds, irrigation and chemicals, because of high pressure of food security This has caused severe environmental problems [1], including pollution of groundwater by nitrate from soils [2], gas emission to air [3], and soil acidification [4]. Loss of nitrogen (N) during maize (Zea mays L.) growth season is an especial concern, as excessive application of N is often combined with heavy summer rains in this region [5]. To ensure both food security and environmental quality, it is essential to seek best management practices, which include appropriate cropping systems that can efficiently utilize solar and soil resources with minimum nutrient inputs. The success of intercropping systems is due to an enhanced temporal and spatial complementarity of resource capture, for which both above-ground and belowground parts of crops play an important role [12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.