Abstract

This work presents a detailed investigation of the energy-transfer and dissociation mechanisms in N2(X1Σg+) + O(3P) and NO(X2Π) + N(4S) systems using rovibrational-specific quasiclassical trajectory (QCT) and master equation analyses. The complete set of state-to-state kinetic data, obtained via QCT, allows for an in-depth investigation of the Zel'dovich mechanism leading to the formation of NO molecules at microscopic and macroscopic scales. The master equation analysis demonstrates that the low-lying vibrational states of N2 and NO have dominant contributions to the NO formation and the corresponding extinction of N2 through the exchange process. For the considered temperature range, it is found that nearly 50% of the dissociation processes for N2 and NO molecules occur in the quasi-steady-state (QSS) regime, while for the Zel'dovich reaction, the distribution of the reactants does not reach the QSS conditions. Furthermore, using the QSS approximation to model the Zel'dovich mechanism leads to overestimating NO production by more than a factor of 4 in the high-temperature range. The breakdown of this well-known approximation has profound consequences for the approaches that heavily rely on the validity of QSS assumption in hypersonic applications. Finally, the investigation of the rovibrational state population dynamics reveals substantial similarities among different chemical systems for the energy-transfer and the dissociation processes, providing promising physical foundations for the use of reduced-order strategies in other chemical systems without significant loss of accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call