Abstract

The influence of rovibrational preexcitation in the CO/Cr 2O 3(0 0 0 1)-system is studied theoretically using a three-dimensional quantum wave packet approach. We find that selectively excited hindered rotational levels of the adsorbate-substrate system influence the experimentally observed rotational alignment of the desorbing CO-molecule significantly. Pure vibrational preexcitation has less effect on the observables of interest. We predict only low surface temperature dependence of the rotational alignment and of the desorption yield. Our study is based on ab initio potential energy surfaces (PESs) for the electronic states involved and on a stochastic wave packet method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.