Abstract

A set of state-specific transition rates for each rovibrational level is generated for the O2(X(3)Σ(g)(-))-O(3)P system using the quasi-classical trajectory method at temperatures observed in hypersonic flows. A system of master equations describes the relaxation of the rovibrational ensemble to thermal equilibrium under ideal heat bath conditions at a constant translational temperature. Vibrational and rotational relaxation times, obtained from the average internal energies, exhibit a pattern inherent in a chemically reactive collisional pair. An intrinsic feature of the O3 molecular system with a large attractive potential is a weak temperature dependence of the rovibrational transition rates. For this reason, the quasi-steady vibrational and rotational temperatures experience a maximum at increasing translational temperature. The energy rate coefficients, that characterize the average loss of internal energy due to dissociation, quickly diminish at high temperatures, compared to other molecular systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.