Abstract

Bariatric surgery appears as the most efficient therapeutic alternative in morbidly obese patients. In addition to its efficiency to decrease body weight, it also improves metabolic complications associated to morbid obesity, including dyslipidemia. Although the cholesterol-lowering effect varies with the bariatric procedures, the underlying molecular mechanisms remain poorly defined. This study aims to assess the consequence of both restrictive (sleeve gastrectomy; SG) and malabsorptive (Roux-en-Y gastric bypass; RYGB) procedures on cholesterol metabolism in mice. Ten-week-old C57BL6/J males were fed with a high-fat diet for 8-14 weeks before sleeve or RYGB surgery. SG has a modest and transient effect on plasma cholesterol levels, linked to a reduction in food intake. In contrast, modified RYGB led to a sustained ≈35% reduction in plasma cholesterol concentrations with a drastic increase in fecal cholesterol output. Mechanistically, RYGB exerts a synergystic effect on cholesterol metabolism by inducing the trans-intestinal cholesterol efflux and reducing the intestinal cholesterol absorption. In mice, RYGB, but not sleeve, strongly favors plasma cholesterol elimination by concomitantly increasing trans-intestinal cholesterol excretion and by decreasing intestinal cholesterol absorption. Our models open new perspective for deciphering the hypocholesterolemic effects of bariatric procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.