Abstract
Efficient channel selection is essential in 802.11 mesh deployments, for minimizing contention and interference among co-channel devices and thereby supporting a plurality of QoS-sensitive applications. In this paper, we propose ARACHNE, a routing-aware channel selection protocol for wireless mesh networks. ARACHNE is distributed in nature, and motivated by our measurements on a wireless testbed. The main novelty of our protocol comes from adopting a metric that captures the end-to-end link loads across different routes in the network. ARACHNE prioritizes the assignment of low-interference channels to links that (a) need to serve high-load aggregate traffic and/or (b) already suffer significant levels of contention and interference. Our protocol takes into account the number of potential interfaces (radios) per device, and allocates these interfaces in a manner that efficiently utilizes the available channel capacity. We evaluate ARACHNE through extensive, trace-driven simulations. We observe that our protocol improves the total network throughput, as compared to three other channel allocation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.