Abstract
We present a routing paradigm called PBR that utilizes steepest gradient search methods to route data packets. More specifically, the PBR paradigm assigns scalar potentials to network elements and forwards packets in the direction of maximum positive force. We show that the family of PBR schemes are loop free and that the standard shortest path routing algorithms are a special case of the PBR paradigm. We then show how to design a potential function that accounts for traffic conditions at a node. The resulting routing algorithm routes around congested areas while preserving the key desirable properties of IP routing mechanisms including hop-by-hop routing, local route computations and statistical multiplexing. Our simulations using the ns simulator indicate that the traffic aware routing algorithm shows significant improvements in end-to-end delay and jitter when compared to standard shortest path routing algorithms. The simulations also indicate that our algorithm does not incur too much control overheads and is fairly stable even when traffic conditions are dynamic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.