Abstract

The major goal of optical packet switching (OPS) is to match switching technology to the huge capacities provided by (D)WDM. We study optical packet switches with recirculating fiber delay line (FDL) buffers. Through simulation, we have assessed the logical performance of a single optical packet router (OPR), focusing on packet loss rate (PLR). By verifying that our scheduling algorithm does not alter the traffic profile characteristics from in- to output, we illustrate how the single node results can be used to assess network-wide performance. We use the capability of assessing end-to-end PLRs to develop network-wide routing algorithms designed to minimize the maximal PLR occurring in the network. In case studies on pan-European networks, we first compare two algorithm variants and thereafter we compare the PLR-based routing algorithm with both load balancing and shortest path routing. While load balancing achieves PLRs that are multiple orders of magnitude lower than shortest path routing, the PLR-based algorithm can reach PLRs up to two orders of magnitude better. The improvement in PLR comes at the price of only a small increase in used bandwidth (a few percent). Subsequently we show that the discussed PLR-based routing algorithm can be easily extended to multiple priorities. By introducing multiple priorities we can keep the loss rates for high priority traffic very low. However, it may lead to an increase of the obtained minimal max-PLR value for low priority traffic. But as we prove this increase to be limited, the cost of introducing multiple priorities is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.