Abstract

Routing of membrane proteins to large dense core vesicles in neuroendocrine cells can depend on information in both the lumenal and cytoplasmic domains. This study in PC12 cells focuses on the routing, cleavage, and secretion of an integral membrane protein, peptidylglycine alpha-amidating monooxygenase (PAM), examining both endogenous and virally derived membrane PAM. The role of the lumenal catalytic domains in membrane PAM trafficking was examined by replacement with an epitope tag. Virally derived membrane PAM is localized to the perinuclear area and to slender processes where the large dense core vesicles are located. Expression of PAM along with a neuroendocrine-specific endoprotease liberates a soluble monooxygenase domain, yielding regulated secretion of both the monooxygenase and the prohormone convertase from large dense core vesicles. The subcellular distribution of the epitope-substituted version of PAM within the cells is similar to that of membrane PAM, and both proteins are internalized from the plasma membrane. When secretion is stimulated, Serine937 in the cytoplasmic domain of PAM is phosphorylated to a similar extent in endogenous membrane PAM, virally encoded membrane PAM, and epitope-substituted PAM. Thus, the lumenal PAM catalytic domains are not required for routing or phosphorylation of PAM in PC12 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.