Abstract

This paper proposes routing misbehavior detection in MANETs using 2ACK scheme. Routing protocols for MANETs are designed based on the assumption that all participating nodes are fully cooperative. However, due to the open structure and scarcely available battery-based energy, node misbehavior may exist. In the existing system, there is a possibility that when a sender chooses anintermediate link to send some message to a destination, the intermediate link may pose problems such as, the intermediate node may not forward the packets to destination, it may take very long time to send packets or it may modify the contents of the packet. In MANETs, as there is no retransmission of packets once it is sent, care must be taken not to loose packets. We have analyzed and evaluated a technique, termed 2ACK scheme to detect and mitigate the effect of such routing misbehavior in MANETs environment. It is based on a simple 2-hop acknowledgment packet that is sent back by the receiver of the next-hop link. 2ACK transmission takes place for only a fraction of data packets, but not for all. Such a selective acknowledgment is intended to reduce the additional routing overhead caused by the 2ACK scheme. Our contribution in this paper is that, we have embedded some security aspects with 2ACK to check confidentiality of the message by verifying the original hash code with the hash code generated at the destination. If 2ACK is not received within the wait time or the hash code of the message is changed then the node to next hop link of sender is declared as the misbehaving link. We simulated the routing misbehavior detection using 2ACK scheme to test the operation scheme in terms of performance parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.