Abstract

Optical dense wavelength division multiplexed (DWDM) networks are an attractive candidate for the next generation Internet and beyond. In this paper, we consider routing and wavelength assignment in a wide area wavelength routed backbone network that employs circuit-switching. When a session request is received by the network, the routing and wavelength assignment (RWA) task is to establish a lightpath between the source and destination. That is, determine a suitable path and assign a set of wavelengths for the links on this path. We consider a link state protocol approach and use Dijkstra’s shortest path algorithm, suitably modified for DWDM networks, for computing the shortest paths. In [1] we proposed WDM aware weight functions that included factors such as available wavelengths per link, total wavelengths per link. In this paper, we present new weight functions that exploit the strong correlation between blocking probability and number of hops involved in connection setup to increase the performance of the network. We also consider alternate path routing that computes the alternate paths based on WDM aware weight functions. The impact of the weight functions on the blocking probability and delay is studied through discrete event simulation. The system parameters varied include number of network nodes, wavelengths, degree of wavelength conversion, and load. The results show that the weight function that incorporates both hop count and available wavelength provides the best performance in terms of blocking probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.