Abstract

A key challenge of routing in delay tolerant networks (DTNs) is finding routes that have high delivery rates and low end-to-end delays. When oracles are not available for future connectivity, opportunistic routing is preferred in DTNs, in which messages are forwarded to nodes with higher delivery probabilities. We observe that real objects have repetitive motions, but no prior research work has investigated the cyclic delivery probability of messages between nodes. In this paper, we propose to use the expected minimum delay (EMD) as a new delivery probability metric in DTNs with repetitive but non-deterministic mobility. Specifically, we model the network as a probabilistic time-space graph with historical contact information or prior knowledge about the network. We then translate it into a probabilistic state-space graph in which the time dimension is removed. Finally, we apply the Markov decision process to derive the EMDs of the messages at particular times. Our proposed EMD-based routing protocol, called routing in cyclic MobiSpace (RCM), outperforms several existing opportunistic routing protocols when simulated using both real and synthetic traces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.