Abstract
Footprint scaling may reduce wire lengths when more metal layers are available for routing. To achieve optimal wire length, footprint should be very small in which case pin density will be extremely high. However, high pin density may lead to detailed routing failure. We demonstrate that there is a threshold pin density beyond which standard routing heuristics fail to access pins on the bottom layer, even with unlimited number of metal layers available for routing. Future technologies, such as vertical slit field-effect transistor (VeSFET), may have layouts with pin density exceeding the threshold. We show that VeSFET layouts are still routable within footprint using two-sided routing. Compared to one-sided routing, two-sided routing achieves shorter wire lengths and fewer vias, hence lower interconnect capacitance and better performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.