Abstract

The Internet of Things (IoT) has become increasingly popular, and opened new possibilities for applications in various domains. However, the IoT also poses security challenges due to the limited resources of the devices and its dynamic network topology. Routing attacks on 6LoWPAN-based IoT devices can be particularly challenging to detect because of its unique characteristics of the network. In recent years, several techniques have been proposed for detecting routing attacks, including anomaly detection. These techniques leverage different features of network traffic to identify and classify routing attacks. This paper focuses on routing attacks that target the Routing Protocol for Low-Power and Lossy Networks (RPL), which are widely used in 6LoWPAN-based IoT systems. The attacks discussed in this paper can be categorized as either inherited from Wireless Sensor Networks or exploiting vulnerabilities unique to RPL (known as RPL-specific attacks). The paper describes various RPL attacks, including Flood Attacks, Data-DoS/DDoS Attacks, Wormhole Attacks, RPL Rank Attacks, Blackhole Attacks, Version Attacks, and Sinkhole Attacks. In this paper, a novel Hybrid Intrusion Detection System (HIDS) that combines a decision tree classifier and a one-class Support Vector Machine classifier is proposed to detect routing attacks. The HIDS draws on the strengths of both a Signature Intrusion Detection System (SIDS) and an Anomaly-based Intrusion Detection System (AIDS) to identify routing attacks with a high degree of accuracy and a low false alarm rate. The routing dataset, which features genuine IoT network traffic and various kinds of routing attacks, was used to test the proposed HIDS. According to the findings, the hybrid IDS proposed in this study outperforms SIDS and AIDS approaches, with higher detection rates and lower false positive rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.